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The steady, two-dimensional motion which can occur when a body moves 
horizontally at large Richardson number is examined. Theoretical evidence is 
presented for two propositions: (i) The nature of the motion depends on whether 
the vertical thickness of the body is large compared with an intrinsic length 
scale of the motion. (ii) If the body is sufficiently thick, then diffusion or heat 
conduction are important, even if the Schmidt or Prandtl number is large. The 
notion of ‘near-similar’ solutions ($4) is used to obtain a description of the 
motion past a thick body which is likely to approximate the real motion every- 
where except fairly close to the body surface ($5). It predicts a very long wake, 
a t  the core of which is a blocking column, both fore and aft of the body ($ 5). 
The same prediction is implied for the two-dimensional Taylor column in a 
rotating system ($6). 

1. Introduction 
One of the striking effects of stable atmospheric stratification is the extent of 

‘upstream influence’ of steady horizontal motion. It is due to the restraining 
effect of buoyant forces upon vertical motion of the ambient fluid. This is most 
pronounced when the moving body (solid or fluid) is wide in comparison with 
its height, so that the ambient fluid has to perform an effectively two-dimensional 
motion to  let the body pass. 

The first question about such upstream influence concerns the basic decay law 
of the motion very far from the body, and this was answered by Long. But he 
gave two answers, based on the respective assumptions that heat conduction 
and mass diffusion are negligible (Long 1959) or that either of these effects is 
important (Long 1962). Subsequent authors have adopted the f i s t  answer be- 
cause the Schmidt number ‘comparing’ viscosity to diffusion is very large in 
the experimental realization in salt solutions (Yih 1959). But in the atmosphere, 
heat conduction and viscosity are generally of equal importance, and even in 
salt solutions some experimental observations (Yih 1959) are at variance with 
the predictions of the non-diffusive theory (Graebell969; Janowitz 1971). Indeed 
the size of non-dimensional parameters is an unreliable guide in circumstances 
affording ample distances over which small effects can accumulate. 

The object of the following is to present evidence in support of the proposition 

t Present address : Fluid Mechanics Research Institute, University of Essex. 
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that the physical mechanism of the upstream (and downstream) influence (or 
wake or blocking) depends on whether the moving body is thick or thin. This 
requires reference to the physical complexity of the fluid mechanism, which in- 
volves four independent length scales- against only one for the incompressible 
Navier-Stokes equations of homogeneous fluid - even without regard to any 
body dimension. The governing equations indicate a key role for the geometric 
mean Z of these four scales, which is (table 2) about 4 mm in salt solutions and 
about 2 em in air. A body will be called thin in the following if its vertica.1 thick- 
ness 2b is at  most of the same order as the intrinsic scale I ,  and thick if 

611 = 6 9 I. 

To decide between Long’s two decay laws requires experimental evidence or 
theoretical analysis linking the far wake to the flow closer to  the body. Pao’s 
(1968) experiment has confirmed Long’s (1959) non-diffusive decay law for the 
upstream wake of a horizontal plate pulled edgewise; it was thin, and the boundary 
layer (Martin & Long 1968) had zero displacement thickness. But for a vertical 
plate pulled broadside, Graebel’s (1969) and Janowitz’s (1971) proposed approxi- 
mations predict a long upstream wake, but no downstream wake, whereas Yih’s 
(1959) experiment shows both wakes and, in fact, indicates fore-and-aft symmetry. 
Such symmetry is unlikely to be compatible with the neglect of diffusion and heat 
conduction (Graebel 1969; appendix C). Furthermore, Graebel’s proposal pre- 
dicts a drag independent of fluid viscosity and even of body speed. Janowitz’s 
(197 1) proposal predicts an upstream wake with divergent momentum integral 
(appendix C), whence an infinite drag per unit span of the body. It cannot, 
therefore, approximate the description of a real flow either. 

By contrast, we shall use the diffusive model ( 5  2) to develop a description of 
steady, two-dimensional wakes of a vertical plate which is free from these defects. 
This description covers not only the far field, but extends closer to the body, and 
thus establishes an unequivocal connexion between the far field and the flow 
nearer the body. In  particular, the drag is predicted to be 

rpUb2/12 = r p 0  Pb(gRi)*.  

The description near the body is qualitatively plausible, but stylized, rather than 
quantitative13 realistic. However, the condition of zero normal velocity on the 
body surface is satisfied, and a plausible pressure dietribution is there predicted. 

The velocity field has fore-and-aft symmetry and the body pushes ahead of it 
a blocking column of fluid which is a t  rest relative to the body. Near the body, 
this column is nearly as thick as the body and is separated from the undisturbed 
atmosphere, above and below, by layers of strong shear and vertical density 
variation. With increasing distance from the body, these layers spread very 
gradually until they merge finally to transform the column into a jet spreading 
and weakening slowly with further distance. The approach to the ultimate 
similarity form of Long (1962) is surprisingly slow. In  the lateral direction (up 
and down), the decay of the motion is more rapid and is oscillatory (in fact, the 
mass flow in the blocking column is balanced by backflow in the layers bounding 



Blocking in a strati$ed $fluid 7 2  1 

that column, so that the total mass flow rate is zero through any plane across 
the wake and fixed with respect t o  the atmosphere). Such a structure of the 
velocity field appears in essential agreement with that observed by Yih (1959). 

It is likely to be an approximate description of the real motion past a thick 
body, and particularly past a vertical flat plate, in the natural limit where the 
plate height 2b is large compared with the intrinsic scale 1 and small compared 
with the stratification scale pm(i3pm/i3z)-1 = h. A necessary qualification is that 
diffusivity (or heat conductivity), 9, be not too small; more precisely, the Richard- 
son number b2g/( U2h), where U is the body speed, must be large compared with 
the Schmidt (or Prandtl) number a = v19. Another way to express all this, in 
terms of the body Reynolds number Ublv = Re and the Boussinesq number 
hlb = /3 is that our description (5 5) is likely to approximate the exact description 
in the limit 

aRi + 00, Rila -+ co, --f co, Re2 aRi -+ co. 

It will be observed that this is not a small Reynolds number limit, contrary 
to the assumptions made by most other authors on the subject. In  fact, the 
usual approaches and arguments, so well established in other, rather similar 
contexts, turn out to be quite misleading here. Accordingly, we refrain pointedly 
in the following from approximating theexact nonlinear governing equations ( 5  2) ,  
but rather proceed on a frank physical hunch and test afterwards the description 
to which it has led us. (This procedure also shows the results of Long (1959, 
1962), Graebel (1968) and Janowitz (1971) to be approximations of a different 
type than had been rather generally accepted; see (31) below.)? 

The analogy between two-dimensional motions in rotating and stratified 
fluids (Veronis 1970) permits us to draw corresponding conclusions for the 
structure and drag of Taylor columns in rotating systems at  small Rossby and 
Ekman numbers ( 5  6). There is no analogy between fluid motion in a rotating 
system and non-diffusive viscous motion in an atmosphere. The assumption of 
two-dimensional motion is restrictive in both atmospheres and rotating systems; 
it aims at the clear illumination of a basic mechanism. 

2. Formulation 

motion, it is sufficient to consider a standard stratification 
To obtain basic information on the far field of a body in steady horizontal 

Pm = ~ o ( l - z " / h ) ,  (1)  

where z* measures vertical height from the centre of the body and po, h are 
positive constants; h is usually very large compared with the body thickness, so 

t The analysis is based on the assumption of unbounded extent of the fluid - axially 
in a rotating system, horizontally in a stratified atmosphere - but this appears to be less 
critical than had often been feared. The observations of the paper following show the 
principal qualitative features of the wakes in stratified fluid not to  be destroyed by end 
walls at a reasonable distance from the moving body. In particular, the fore-and-aft 
symmetry is confirmed by these observations at parameter values consistent with (30) 
below (but see 'Note in review' on page 725). 

46 F L M  54 
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that the artificial introduction of negative density at distant levels is of no 
practical concern. 

We ask what steady, two-dimensional, incompressible flow can develop as 
the body is pulled in the horizontal direction of increasing x*. In  our frame fixed 
with respect t o  the body, then, 

u*+-U, w*+O, p*+pw as (x*(+oo. (2) 

div(p*v*) = 0, (3) 

(4) 

Conservation of mass and momentum are expressed by 

(p*v*.grad) v* = - gradp* +pV2v* +p*g, 

pst = pod - z* + 2*2/(2h)I. 

and the hydrostatic pressure relative to that at  z* = 0 is thus 

The stratification arises usually from temperature or sdinity variation. If 
heat conduction or salt diffusion is significant, then diffusion theory (Prandtl 
1952; Bird, Stewart & Lightfoot 1960) shows conservation of energy or salt to 
be expressed to the first approximation by 

(v*-grad) p* = 9V2p*, (5) 

with thermal or mass diffusivity 9 which is constant to this approximation, 
as is the viscosity p = pov. 

is called the Prandtl number, in the case of heat conduction, and the Schmidt 
number, in that of mass diffusion. 

Equations (1) - (5) have already introduced four length scales, h, v /U ,  U2/g 
and 8 / U .  Their geometric mean, 

t3 = v/3 

1 = (gSv/da 

is a property of the fluid independent of any body or motion. We therefore 
transform to non-dimensional perturbation variables by 

x* = Ex, x* = zz, 

(6) 
u*(x*, 2") = - u+ Uu(x ,  z ) ,  w*(x*, x * )  = Uw(x, z ) ,  

P*(X*,Z*) = POP = Pw + e-3hP0P(x, z) ,  

P*(Z*, 2") = 2% + (pU/l)p(x, 4, 

p = 1 - ~ ~ + ~ - 3 h p ,  

where h = Z/h and e3 = t3-2(v/C7h)* (gh/U2)*. Thus 

and Uu, Uw are also the absolute velocity components with respect to the 
undisturbed atmosphere. Some typical values of these scales and parameters 
are shown in tables 1, 2 and 3. 

With the abbreviations 
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b v(cm2s-1) 6 (cmz 8-1) h (cm) g(cms-2) 

Yih (1959) (salt water) 1 om 0.013 1.1 x 10-5 500 980 
Air 0.14 0.19 9.4 x 106 980 

TABLE 1 

Yih (1959) Air 
1 (em) 0.0166 2-26 

A 3-3 x 10-5 2-4 x 
r-J------ 7- m 

U (cm s-1) 0.02 0.2 5 1200 
& 0-323 0.150 0-256 0.0407 
U 0.025 0.252 80.3 2.02 x 104 
ale 0.078 1.69 330 5~ 105 

TABLE 2 

Yih (1959) 
1 om 
61 

2 x 10-3 

Air 

20 m 
890 

2 x 10-3 

100 m 

10-2 
4450 

0.02 0.2 

0.48 4.8 
4 x 1 0 - 4  4 x 10-3 

20 9 
2 x 10-4  z x 10-2 
1 0 - 2  10-4 

5 1200 
0.09 23 
0-07 17 

230 36 
6x10” 380 

0.5 10-5 

TABLE 3 

5 1200 
0.02 4.5 
0.013 3.3 

1100 180 
2 . 5 ~  15 

60 10-3 

(3)-(5) take the forms 
au aw 

= A p w - ~ ~ h D p ,  (7)  

a ~ w  = - appz + Q=W - p, 

E - ~ P - ~ D P  - w = Q’p. 
(9) 

(10) 

The standard procedure is now to look for an approximation to a solution of 
(7)-(10) as a parameter tends to zero (e.g. the Reynolds number (Graebel 1969; 
Janowitz 1971)) by neglecting the terms it multiplies in (7)-(10). This turns out 
to be misIeading in the problem a t  hand. A somewhat better heuristic principIe 
is needed, and we propose the following. If T is an operator and we ask whether 
a function g can approximate a solution f of Tf = 0, we can look at  Tg in a limit 
of interest. It is then relatively straightforward to split Tg into dominant terms 
and terms that tend to zero by comparison. If the dominant terms cancel by 
virtue of the choice of g, then g will be called a ‘limit solution’ in our limit, be- 
cause Tg + 0 in a meaningful way. 

46-2 
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As an example, the Falkner-Skan similarity solutions of classical boundary- 
layer theory are exact solutions of the boundary-layer equations, but those 
are only approximations to the (incompressible) Navier-Stokes equations in 
a certain limit B. As exact solutions, they lack relevance because they satisfy 
only special initial conditions, and the slightest change in those conditions 
generally destroys the special symmetry necessary for a solution of similarity 
form. In  short, they are only isolated, special solutions of approximate equa- 
tions, while our interest is in approximate solutions to the Navier-Stokes 
equations. The real relevance of the similarity solutions derives from the fact 
that they are representatives of classes of boundary-layer solutions within each 
of which all the solutions have a common asymptotic behaviour (Serrin 1967) 
in a certain limit -which is just limit B. They are, in fact, limit solutions of the 
(incompressible) Navier-Stokes equations in that limit B. 

That g is a limit solution of Tf = 0 does not establish that g is an asymptotic 
approximation to a solutionf; it only makes g a candidate for such an approxima- 
tion. But g cannot even be such a candidate in a given limit unless it is a limit 
solution in that limit. Of course, g cannot usually be expected to be a limit 
solution uniformly throughout the space of the independent variables. 

Further, the distinctions between parameter limits and coordinate limits 
(Chang 1961) and mixtures of them must be borne in mind. Thus the ultimate 
decay law of the upstream wake in our problem must be a limit solution in the 
limit x ++ co. A limit such as A :  x ++ 00 with Ax4 + 0 will be called a condi- 
tional limit because an experiment must usually proceed with fixed parameters 
A, etc., and however small A, limit A must then fail for all sufficiently large x. 
A limit solution in such a conditional limit A can only be an “asymptotic 
transient’’ (Meyer 1967) with respect to the true co-ordinate limit z + + 00. 

None the less, such a transient may be all that is readily observable. 
Our search for limit solutions of (7)-( 10) will be assisted by the use of a simpler, 

associated set of equations as heuristic guide or ‘comparison’ equations, and 
it will be unnecessary to inquire how those are related to (7)-(10).7 We choose 

and propose to study relevant solutions of these with a view to testing whether 
they are limit solutions of the exact equations (7)-(10). 

t Note in review. The governing equations (7)-(10) contain no Reynolds number. While 
a may look superficially like a Reynolds number, no body dimension has been defined yet 
and, moreover, the length scale I in (6) is itself dependent on viscosity, so that, a is not 
proportional to the reciprocal of the viscosity. None the less, we expect the inertia terms 
in (7)-( 10) to be relatively unimportant in our problem because it is characteristic of steady 
wakes that the diffusion of momentum by shear is the primary process in them. Inertia 
enters in a secondary manner because the situation does not fit the very restrictive con- 
ditions of symmetry under which pure shear without fluid acceleration is possible in fluids. 
That shear is a primary process and fluid acceleration, only a secondary one, applies with 
particular force to the very long horizontal wakes expected in stable atmospheres. Indeed, 
their inviscid models (Yih 1965) are blocking columns of indefinite length. Another 
heuristic motivation for (11) has been given by Childress and Carrier (see Moore & Saffman 
1969). 
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Experiment (Yih 1959) indicates the horizontal wakes of a vertical platet 
to be symmetrical both with respect to the horizontal plane x = 0 (because there 
is no lift) and to the plane of the plate, i.e. u(x , z )  is even in both x and x ,  and 
w(x, z )  is odd in both. Accordingly, we consider only motions with that symmetry 
in what follows. For solutions of ( l l ) ,  this implies a pressure perturbation p 
even in x and odd in x, and a density perturbation p odd in both, and it will 
suffice henceforth to consider x > 0. The exact equations (7)-( 10) admit solutions 
with almost this symmetry of u and w, if the Boussinesq parameter h is suf- 
ficiently small; p and p then have the noted symmetry in z, but not in 5. 

3. Similarity 
The search for limit solutions for the far field is simplified by the observation 

that the ultimate far field cannot depend on details of body shape and hence 
must be invariant under affine transformations. Long (1962) has therefore 
proposed 

( 1 2 )  I ~s = (3x)-&h(r) ps = ( 3 x ) - * r ( ~ ) ,  

us = (3x)-#f’(r) ,  ws = (34-4g(r), 
7 = (3Xj-k 2, 

with 

for the far upstream wake. (It satisfies ( l l ) . )  Substitution into (7), multiplied 
throughout by (3x)$, gives 

(rf” + 2f’ - 9’) [l - h(3x)i  7 - ~ ~ h ( 3 x ) - 3  r ]  = - h(3x))g - ~ ~ h ( 2 r  +yr‘) 

+ 2h(3x)-*f‘r +~-~h(32)-%’(rlf’-g). 

Thus (12) is a, limit solution of (7) in the conditional limit x -+ co for fixed 7 
with Ax* --f 0 and c 3 h  .+ 0, iff, g ,  r E C‘l( - co, co) and the first of (13) is satisfied. 
Substitution in (8)-( 10) similarly leads to the other equations of (13) and further 
limits, all of which are summarized by 

x -+ 00, 7 fixed, EX-)  -f 0, Ax* -+ 0,  ~ ~ x - 4  -+ 0. (14) 

Thus x must be large, and the Boussinesq parameter h small, but 6 not too 
small, for (12) to be a candidate for a (transient) asymptotic approximation to 
a fluid motion. 

For u even, and w odd, in x ,  (13) integrates to f”+qh  = 0, h“-qf = h”(O), 
and so if 

T = j-17, 6 = jr, j = exp (&in) 

t Note in review. The authors are indebted to Dr F. K. Browand and Dr C. D. Winant 
for communication of an account (to be published in Geophysical Fluid Dynamics) of 
experiments in a parameter range different, from (30) below, which show a motion without 
fore-and-aft symmetry. Further work appears necessary to tell whether these lend more 
support to a diffusive or non-diffusive mechanism in their parameter range. 
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FIG- 1. Similarity profile for the horizontal velocity of the far wake. 

and h + if = q5(7), then 

azf/ap = .gf+ i$)) a24/a72 = T+ +jw(~).  
The unique solution giving bounded us as 1.1 -+ 00 for fixed 2 is 

f(7) = - &nh"(O) [ijAi(E) - ijij-lAi(7) + j  Gi(4)  +j-l G ~ ( T ) ]  (15) 

(figure l), where Ai is the Airy function and 

Gi(z) = Ai(.)~~~i(y)~~+Bi(z)SoA;(l/)dy z: 

is discussed by Scorer (1950). Since Gi"(z) = - 7r + x Gi(z) ,  

h(7) = ginh"(0) [ i jAi(t)+ij- lAi  ( 7 ) + j C i ( f ; ) - j - ' G i ( ~ ) ]  

= O(7e4) as 171 +a, (16) 

which is integrable on ( - co, 00);  by contrast, 

fm - - ~ - ~ ~ w + o ( I ~ I - ~ ) ,  fw = o(T-2) as 171 --fa. 

This limit solution describes a system of jets in the frame of an observer at rest 
with respect to the undisturbed atmosphere: a central jet in the direction of the 
body's motion is flanked by pairs of jets of dternating direction and rapidly 
decreasing strength (Long 1962; figure 1) .  The whole pattern spreads and decays 
according to the law (12). 

Since h -+ 0 in (14), the limit solution satisfies the Boussinesq approximation 
and thus has a stream function. This tends to zero (like 1x1-1) with vertical distance 
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1x1 from the axis of symmetry z = 0, and the far wake therefore has zero dis- 
placement thickness. But it has a non-zero momentum integral. In  this respect, 
it must be noted that the hydrostatic pressure pst is even less integrable than in 
an homogeneous atmosphere and now even faiIs to be odd in z. It is even in x, 
however, and therefore makes no contribution to the overall momentum balance. 
The momentum integral of the upstream wake may thus be taken as 

OD 1 ($I* -p's+,+p*u*~-puu*/ax*)dZ* 
-OD 

-pusOD p d z = p U J m  h(r)dr  as %+to (17)  
--m --m 

by (6) and (12), and this exists, by (16). In  fact (appendix A) 

J -OD 

It is as well to note, however, that (14) makes no case for the practical value 
of this limit solution in the atmosphere or in laboratory experiments with salt 
solutions. The distance needed to approximate (14), and in particular, s-3x4 + 0,  
to a reasonable degree, is often huge (Table 2). A similar analysis of Long's (1959) 
non-diffusive far-wake similarity law shows that law to be a limit solution of the 
exact equations (7)-(10) for 

I (19) 
BX + to, A&X* -+ 0, ac-%x-+ -+ 0, 

A&--x% -f 0 and dx-kz fixed, 

which tends to be approximated a t  not quite so large distances (table 2). But 
this comparison is misleading, because it will emerge below that the large dis- 
tances are required, not for diffusion to become important, but merely for the 
influence of body shape to die away so that a similarity law can be approximated. 

It will help presently to have a similarly explicit representation for Long's 
(1962) diffusive similarity law 

(20) 

(21) 

i P = (3x )*k( r ) ,  P = r ( r )  
u = d(rl), w = ( 3 x ) - b ( 7 )  

7 =1 (3X)-)Z, 

r = -kf, s = - T I ' ,  s' = yg", g"' = k-qk' 

for a boundary layer. If 

so that q(q) = -g", then q" = qk", kiv = - qq and the boundary conditions for 
a boundary layer above ;t solid wall at z = 0 are 

u(0)- 1 = q'"(0) = 2k"'(O) = s ( 0 )  = 0. 

q(7) = 3j4Ai  (t) + 3 j A i  (T), 
The unique solution is 
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the skin friction coefficient is 

D. D. F r e u n d  a n d  R. E. N e y e r  

(zp) aU*/az*l,=, = - 3 9 x - + / r ( g )  

and the displacement thickness is also zero. 
To decide between (12) and the non-diffusive far-wake law for a thick body 

requires establishment of a connexion between the far wake and the flow closer 
to the body. Since details of the flow very closs to the body are not of direct 
interest in this connexion, it suffices to  consider a standard body, and the most 
convenient one is a vertical flat plate. The artificial singularities thereby intro- 
duced at the sharp edges 

are of no concern in the present context, and the qualification ‘except in a 
neighbourhood of the plate edges ’ is understood in all that follows. 

On the inviscid fluid model (Yih 1965) the two-dimensional steady flow caused 
by the broadside motion of the plate consists of fore and aft blocking columns- 
in which the fluid is at  rest relative to the plate - separated from the undisturbed 
atmosphere above and below by plane vortex sheets z = zf: 0, -GO < x, y < 00. 
In  a real fluid one then expects shear layers in the place of the vortex sheets, 
and experiment (Yih 1959) confirms that. Sufficiently near each plate edge, the 
shear layer must be independent of that issuing from the opposite edge, i.e. for 
x .g 8 the shear-layer structure must be invariant under affine transformations 
and hence must have similarity form. The whole flow at x B 1 can then be 
expected to be described by the superposition and interaction of these shear 
layers. This argument is fundamental to the analysis of magnetohydrodynamic 
wakes and Taylor columns in rotating fluids and applies equally to the upstream 
wake in non-diffusive stratified fluid (Graebel 1969). It is important to under- 
stand that this well-established argument fails as soon as heat conduction or mass 
diffusion are significant, because no similarity shear layer can then exist ! 

Indeed, a limit solution describing such a spreading shear layer must satisfy 

u + O  as z++00, u - t l  as z-f-00, 

say. For the limit (14), that implies again (20), whence (21), and the general 
solution is again a linear combination of Airy functions of 6 and r ;  but there is 
no such combination which is bounded for -00 < y < 00. 

z * = + b ,  z = + b / l = + O ,  x = O  

4. Near-similarity 
A relevant solution of (1 I )  must satisfy 

u -+ us(x, z )  as 6 = ( 3 x 9  8 -+ o 
because the wake must approach similarity form ultimately, and (12) is the only 
similarity solution of (1 1) that possesses a non-zero momentum integral. Now, 
from (12) and (15) it can be shown (as in appendix A) that 

uS(X,  Z) = - h“(0) ( 3 ~ ) - 3  7 exp ( - 4 T 3 )  cos (77) d7 

rcc 
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with unknown constant h”(0). This suggests consideration of the functions 

I F(0t) exp ( - t3x)  cos (zt)  dt, 

which solve (11) for any function F(&) assuring absolute convergence of the 
integrals for all z and all x > 0. Then 

fm 
uF(z, x) = 6 J ~ ( 6 7 )  exp ( - $ 7 3 )  cos (717) d7 

and thus if P(y) is a power of y, then uF has similarity form; in particular, if 
P(y) = y, then up = constant x us. Otherwi,e, ( 2 3 )  has no similarity form, but 
if P(y)  is smooth enough at  y = 0, for instance, if P(y)  = constant x yn + o ( p )  
for some integer n 2 0 and if F(y)  is bounded, then (23) may be called a ‘near- 
similar’ solution of (1  1) because, as 6 + 0, 

0 

with again 6 = (3x)-40, 7 = (3X)-*Z, 

up - constant x @+l T* exp ( - 4 ~ ~ )  cos (717) d7, 
JOrn 

i.e. (23) approaches similarity form far upstream. 

only if, {up, wp,pR,pp} + {as, w,, ps,ps}  as 6 -+ 0, and that is assured if 
A near-similar solution (23) thus has a non-zero momentum integral if, and 

lim F(y)/y  = c > 0 (24) 
v-0 

(and, say, P is bounded so that the integrals converge well), for then 

and similarly for w, p and p .  
The determination of F requires conditions reflecting the nature of the motion 

nearer to the plate, though (14) raises doubts whether the near-similarity 
approach can cover more than a far-field approximation. However, two com- 
patibility conditions at x = 0 are plausible: First, the relative normal velocity 
on the plate should vanish, i.e. u(0,z) = 1 for 1zI < 8. Secondly, the ‘motions’ 
fore and aft should join smoothly, away from the plate, and since the proposed 
symmetry ( 5  2) requires a hydrodynamic ‘pressure’ perturbation p odd in x, 
it follows that p(0 , z )  = 0 for IzI > 0. Thus P must satisfy the dual integral 
equations 

lim 01: ~ ( 8 1 )  exp ( - t3x) cos ( z t )  dt = 1 for 121 c B, 

lim B / ~ ~  t-lF(ot) exp ( - t3x) cos ( z t )  dt = o for 121 > e. 
x++o 

x++o 
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Now, since our interest is not in a solution of (ll),  but in a candidate for an 
approximate solution of (7)-(lo), there is no reason at this point for avoiding 
purely formal manipulation. Then (25) can be replaced by 

m 

uR( + 0 , ~ )  = O S o  F(0t) cos (zt)dt = 1 for 1x1 < 8, 

pR(+0 ,x )  = 8Jom t-lF(et)cos(zt)dt = o for 121 > 8, 
(26) 

(cf. Moore & Saffman 1969, equations (8.11, 12); Graebel 1969, equations (18)). 
By (24), F ( y )  can be defined as an odd function on (-oo,oo), so that the even 
function F( &)/t has formal Fourier transform 

Similarly, 

T[F(Bt) sgn t ]  = 

= 

= - T[t sgn t]* T[F(Bt)/t]. 

P(&) sgn t x ei&dt = 2uF( + 0, z ) / e  J y m 

t sgn t x t-iF(et) eid dt 

1 
277 

Hence, 
1 1 

277 7T 
uF(+O,z)  = -T[tsgnt]*p(+O,z) = - [Z-~*?J ' (Z ) ]*~~(+(~ ,X)  

with principal value integral and p'(z) = 8pF( + 0, x ) / a Z ,  and by (26), 

nuR( + 0, 2) = J - p'(E) (z  - t)- ldC = 1 for 1x1 < 6. 
-ti 

This is a well-known singular integral equation of which the only solution that 
is integrable and Holder continuous on ( - 6,O) and odd in is 

p'(z) = -x(O2-z2)-* for IzI < 8. 

Thus if the 'pressure' perturbation is continuous at the plate edges, it must be 

z )& for 121 < e 
for 1x1 > 8, 

P F ( + 0 , Z )  = {r- 
and from (23) and (26), F ( y )  must satisfy the integral equation 

{ r 2 - z 2 ) &  for I z I  < e 
for 1.1 > 8. 

t-lF(Bt) cos (zt)  dt = 

But that is a Fourier transform, and (Bracewell 1965) F(y)  = Jl(y), the Bessel 
function of first order. 
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5. A candidate 
The near-similar expression (23) of direct interest is therefore 

for x > 0, -00 < z < 00 (except a t  the plate edges), and u is even in x, while 
p, p and w are odd in x. This is to be tested as a limit solution of (7)-(  lo), but in 
what limit? The answer requires some discussion of the ‘motion’ represented 

First, since Jl(67) N &37 as S+ 0 for bounded 7, and by (27), it can be confirmed 
(as in appendix C) that u(x, z )  N - # I 2 ~ / h ” ( 0 )  + o(S2) as x 3 co so that 6 -+ 0, 
with q fixed, and similarly, (w,p,p) N - ~ 6 2 ( w s , p s , ~ s } / ~ “ ( 0 ) .  As intended, there- 
fore, (27) tends to Long’s similarity limit solution (12) at sufficiently large 
horizontal distances from the plate. It then exhibits the structure noted in Q 3 
(figure 1). This distant decay law, moreover, is now related to the body, a t  least 
to the extent that the arbitrary constant in Long’s law is determined as 

by (27). 

h”(0) = - $6‘2, 

whence (17) and (18) give the drag (contributed in equal parts by the upstream 
and dowstream wakes) of this ‘motion ’ as 

T,uU~’~ = npU(b/l)2 = np, U%(cRi)*, 

where c = v/S is the Prandtl or Schmidt number, and Ri = b2g/(U2h), the 
Richardson number based on the plate height and speed. It may also be observed 
that the stream function is O(z-1) for fixed x + 0, by Riemann’s Lemma, so 
that the total ‘mass-flow ’ in the wakes (relative to the undisturbed atmosphere) 
is zero. 

Secondly, near the plate, as 6 = (3x)3 ,  6’ + 00, it is found (appendix B) that 

for IzI < 8, 
lim u(x,  z )  = 
S+m 02(z2 - 62)-4 [ IzI  + ( x 2 -  02)*]-1 for IzI > 8, 

and, at least in the distribution sense, 

Thus the condition of zero normal ‘velocity’ a t  the plate is satisfied, and there 
are ‘blocking columns’ fore-and-aft of the plate. Above and below them, the only 
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FIGURE 2. Horizontal velocity profile at x = 0, i.e. S = cu. 

i 

3.0 

2.0 

0 0.2 0.4 U 

FIGURE 3. Horizontal velocity profile at  distance from body 
corresponding to S = (32)-* % = 1. 
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3 4  

3.0 

0 0.2 0.4 0’ IV 

FIGURE 4. Vertical velocity profile at distance from body corresponding to  6 = 1. 
Note that the velocity scale is multiplied by 02. 

perturbation is in the horizontal ‘velocity’, and this decays monotonely and 
algebraically with height (figure 2). The ‘blocking columns ’ are bounded above 
and below by zones of high ‘shear’ adjacent to zones of high ‘density’ perturba- 
tion and rapid ‘pressure’ variation. Of course, this can at  most be interpreted as 
a stylized representation of fluid motion, leaving out of account the secondary 
fluid acceleration implied by the shear and density variation. Despite the 
smoothing effect of diffusion, there is a marked ‘density’ deficiency at the lower 
edge of the ‘blocking columns’ and a corresponding excess, at the upper edge. 
Across the plate there is a ‘pressure’ jump which takes its maximum value of 
2BpU/1 = Zp, U2(cr Ri)g at the plate centre and exerts a force equal to the drag 
on the plate. If B = b/Z 9 1, the ‘motion’ even comes close to satisfying the no- 
slip condition at the plate, since w = O(8-2) there, so that only a minor non- 
uniformity near the plate surface is then indicated (except at  the edges). Of 
course, it is not intended here to study the flow very close to the plate, and the 
limit 8 --f a only serves to indicate the structure of the ‘motion’ not too far 
from the plate. 

To sketch the transition between the two limits, some representative profiles 
at  distances corresponding respectively to 6 = (3x)-*O = 1 and 3 are shown in 
figures 3-8. (For Yih’s (1959) experiment with a plate 1 in. high, 6 = 1 at about 
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z: 0 

3.0 

I 

0.15 pj0  

FIGURE 5. Pressure perturbation profile at distance from body corresponding to 6 = 1. 

20 m from the plate, and 6 = 3 at about 60 ern distance from it.) Figure 7 shows 
values u > 1 near the axis of symmetry: the ‘fluid’ is not only blocked, but even 
accelerated backward, away from the plate. At these intermediate distances 
corresponding to 6 = 0(1),  the ‘shear’ zones bounding the ‘blocking column’ 
spread and merge, and 6 = 1 thus characterizes the length of the ‘blocking 
columns ’ fore-and-aft. In  Yih’s (1959) experiment they are thus about 20 m long ! 

The next concern is with the extent to which the inverted commas can be 
removed by showing the comparison ‘motion’ to be a limit solution of the 
governing equations (7)-( 10). It is plausible that the near-similar expression (27) 
may be a limit solution under a less restrictive far-wake limit than (14). Actually, 
the structure of the motion in the middle field, and even in the region of the 
body corresponding to large 6, is fairly plausible and the ‘motion’ satisfies the 
physical boundary conditions on the plate to a surprising extent when it is 
thick (6 = b/H > 1) .  The general decay and spread with increasing x implies, 
moreover, that the ‘velocity’, ‘density’ and ‘pressure ’, and all their derivatives, 
are largest in the region of the body. In  that region, the last set of limits shows 
Ou, p /8 ,  p and e2w to  be essentially functions of $3 and hence, a pure parameter 
limit based on O + 00, rather than on x +- 00, is appropriate there. 
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\ Z:U 

0 0.1 0.2 0.3 p 

FIGURE 6. Density perturbation profile at distance from body corresponding to S = 1. 

To test this, let t = s/a in (27), so that 

with 

and substitute into (7)-(10). In  the case of (10) for instance, this gives for x: > 0 

.-.(la ds - 1) ( - 8-1Js3B ds) + €-3(pB as) 8-1JsA ds - p B  ds 

= 8-4Js6Bdg -Js2Bds, 

and reference to (27) shows that these integrals remain bounded as 8 + 03 for 
fixed 6. Hence, (28) is seen to satisfy (10) in the limit 8 3 03, ~ ~ 8 - l  3 0. Similar 
substitution in (7)-( 9) shows (27) to be a limit solution of (7)-( 10) in the parameter 
limit 

e + W ,  M + O ,  ale+ 0, €-38-1+ o (29) 
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3.0 

2.0 

FIGURE 7. Horizontal velocity profile a t  distance from body corresponding to 

There is actually a small excess velocity a t  the centre of the blocking column. 
6 = (3s)-S 8 = 3. 

or in terms of the dimensional scales ( 3  2) 

b/l -+ GO, b/h 3 0, i 

Thus the body thickness 2b must be large compared with the intrinsic scale 1 
(table 2), but small compared with the stratification scale h. The 'Reynolds 
number' a = UZ/v can be large or even small, provided it is not too small. On 
the other hand, the body Froude number P = U/(gb)* must be quite small, 
especially when the Prandtl or Schmidt number a = v /S  is large. In  fact, the 
limit is essentially one in which the Boussinesq number p = h/b and Richardson 
number Ri = ,8-1P-z = b2g/( U2h) are large, since (29) can also be written 

Re) (a Ri)4 -+ co, p 3 co, (a Ri)-* + 0, a* Ri-t -+ 0. (30) 

Here Re = Ub/v can also be large (or even small, if not too small) so that (30) 
has the misleading appearance of an inviscid limit but, in fact, viscous shear has 
been seen to play a crucial role and inertia an unimportant one. By contrast, 
asp --f co with F-2 = p Ri fixed, (7)-( 10) tend to the equations describing a homo- 
geneous fluid. 
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0 7.0 4.0 6.0 0’ LV 

FIGURE 8. Vertical velocity profile at distance from body corresponding to 8 = 3. Note 
that the velocity scale is multiplied by 02, so that even at this distance, 20 itself is quite 
small. 

Por Yih’s (1959) experiment, 8 w 60 and (29), (30) are well approximated 
(table 2 ) ,  except for the last limit, since r38-l  ranged from fr to 5,  so that the 
convection terms in the salinity diffusion balance were perhaps more important 
than allowed for in the present analysis. 

The near-similarity approach has thus led to a likely approximation (27) which 
turns out to extend Long’s (1962) far wake description nearly to the body surface. 
Indeed, we now notice that (29) and 6 = (3x)-* 8 -+ 0 together imply x --f 00, 

ax-* -f 0, c 3 x - *  -+ 0 and hence, imply (14), if 7 is fixed and A, as usually, is 
very small indeed. The far wake is therefore effectively covered by the parameter 
limit (30), which need not be restricted by the qualification ‘for fixed co-ordinate 
values’ usually implicit in parameter limits. 

It may be verified in a similar manner that Graebel’s, (1969) and Janowitz’ 
(197 1) non-diffusive proposals are limit solutions of the exact equations (7)-( 10) 
in the parameter limit 

€8 -+ 00, he + 0, (a/€)  (€0)-2 -+ 0, €983 --f o 
or (Re Ri)* --f 00, ,8 -+ 00, Ri --f 00, c,8 Ri-1 -+ 00, (31) 

which differs from (29) and (30) mainly in the fourth condition. Thus (31) puts 
an upper bound on the Richardson number, while (30) does not, and since Ri cc b2, 
(30) must become more appropriate (all other things being equal) for sufficiently, 
thick bodies. Of course, even though they are limit solutions, the proposals of 

47 F I. M 54 
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Graebel (1969) and Janowitz (1971) fail to predict a downstream wake? (Yih 
1959) and a finite drag dependent on the body speed. 

6. Structure of Taylor columns 
The two-dimensional motion of a viscous, incompressible, homogeneous fluid 

in a system rotating with constant angular velocity Q is known (Veronis 1970) 
to be related by an analogy to the two-dimensional motion of a viscous, diffusive, 
incompressible and stratified fluid of unit Schmidt or Prandtl number to which 
the Boussinesq approximation has been applied absolutely ( A  = 0). The motion 
in the rotating system is here understood to  be two-dimensional in the sense that 
it does not depend on the distance y' from a plane through the axis of rotation. 
If the angular velocity is in the direction of increasing x',  the analogy is expressed 
by the correspondence 

x 2 u w p p 1 a = c 3  u 
2' x' w' u' -v' p' 1' a' V (32 )  

where primes distinguish the quantities referring to the rotating system, 
1' = (Qv/Q)* and a' = V/(2vs2)9; a transformation to non-dimensional variables 
precisely analogous to (6) (except that p' = const = po) has been applied to the 
variables in the rotating system. In  other words, the motion in the rotating 
system is governed by (7)-(10) translated according to (32 ) ,  except that h = 0, 
e-3 = a' and /? = 1. The analogue of the boundary condition ( 2 )  is that the fluid 
motion approaches rest (with respect to the rotating system) as lx ' l  3 CO, and 
the horizontal motion ofa vertical plate of height 2b in stratified fluid corresponds 
to the broadside motion with constant speed V along the axis of rotation of a 
plate of width 2b' = 26'1' in the x' direction and of indefinite extent in the y' 
direction. 

It follows that the analogue of (27 )  is a near-similar limit solution of the exact 
equations governing viscous, homogeneous fluid motion in the rotating system 
in the limit 

(33 )  I 8' = b'/Z' = b'(2!2/~)4 = (2 /E)9  -+ 00, 

a'/& = V/(2Qb' )  = ~ R O  + 0, 

where Ro and E = v/(s2bt2) = Ro/Re are the Rossby and Ekman numbers, re- 
spectively. This limit solution describes the Taylor columns fore and aft of the 
plate as long wakes. They approach similarity form analogous to (12) as 
6' = (3z')-t8' = [2a/ (3vz*) ]*  b' -+ 0 and then consist of a weak central jet in the 
direction of the plate's motion, flanked by pairs of still weaker jets of alternating 
direction- the lateral decay of the column is oscillatory and algebraic ( 5  3). The 
axial decay is described by (12) and (32 ) .  But since 6' -+ 0 only for lz'l 9 
a, large distance may be needed for a close quantitative approach to this similarity 
form. 

The limit solution satisfies the condition of zero normal velocity on the plate, 
but fails to be a limit solution of the governing equations close to the plate and, 

t See Note in review on page 715. 
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especially, in a neighbourhood of the plate edges. However, it describes the 
transition from the similarity decay law to a well-formed Taylor column (Taylor 
1922) not far from the plate. The ‘edges’ of the column are distinguished by 
strong velocity gradients, with velocities parallel t o  the plane of the plate pre- 
dominant in the inner part of the ‘layer’ and axial velocities, in the outer part. 
These bounding ‘layers’, and the column with them, spread gradually with 
distance from the plate. The ultimate spread is the analogue of that described by 
(12), (13) and (15), (16) with 7’ = (3x’)-*x’ = [2Q/(3vz*)])x* in the place of 7. 

The mass-flow in the column is balanced by a back-flow in the bounding layer. 
The analogy gives the drag per unit span of the plate as m,uV(b‘/Z‘)2, i.e. gives 
a drag coefficient D/(+p, V2 x area) = 271/Ro. This is about 21 % higher than 
observed for a disk (Maxworthy 1970), the difference being due to the important 
differences between two-dimensional and axisymmetrical motion (Moore & 
Saffman 1969, whose analysis shows the drag coefficient then to be 32Qr/(3nV) 
for a disk of radius r )  at distances O(Qb‘3/v) from the body, where the Taylor 
column disappears. The predictions are also consistent with those of Bretherton 
(1967) for the temporal development of two-dimensional Taylor columns in 
unbounded fluid. 

This work was supported in part by NSP Grant GP-28699, by an NSF Pre- 
doctoral Fellowship for the first author at the University of Wisconsin, by the 
Mathematics Research Center, University of Wisconsin, and by the Fluid 
Mechanics Research Institute, University of Essex. The authors are indebted 
to Dr C. S. Yih, Dr T. B. Benjamin and Dr W. G. Pritchard for vaIuabIe dis- 
cussions. 

Appendix A 
To compute the momentum integral of Long’s (1962) similarity solution from 

(IS),  note that the Airy function is defined by 

where Pk are the rays from 0 to co exp $mrik, and similarly (Scorer 1950) 

= -1; exp ( - i s 3 )  cos (7s) ds 

47-2 
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so that (18) will follow from the more general result 

D. D. Preund and R. E. Meyer 

I, = exp ( - t"/n) cos (qt) dt = ~n for n > 0. 

Here integration by parts gives 

and g(7) eL(0, a) for any fixed a > 0, since it is defined and bounded on (0, a). 
By Pubini's theorem, therefore 

1, = lim tn-l exp ( - tm/n) Si (at) dt, 
u+m Sm 1 

where 
r z  

is bounded on [ O ,  00). Thus for a > 0, 

]tn-lexp ( - tn/n) Si(at)] < tn-lexp ( -  tn/n) x constant EL(o, 00) 

and by Lebesgue's dominated convergence theorem, 

The same result permits the exact computation of the momentum integral of 
Long's (1959) non-diffusive fa,r wake as 

23pu1, = 4npu. 

For even n > 0, I, was effectively computed by Bernstein (1919) by a different 
approach. The present method also yields 

fork>  l , n >  1. 

Appendix B 
To obtain the limit of (27) as 6 = (3x)-* O-++oo, observe first that 

s-l~l(s) cos (sz/e) E L ( o ,  a) 

€or any z/O, so that (28) gives, by the dominated convergence theorem, 

limp(x, x )  = 0 s-lJl(s) cos (sz/O) ds 
8+m JO* 
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(Watson 1966, p. 405). Next, with A = 118, (28) gives 

$(s, A) ~ ( s )  ds, @(s, A) = s--2 exp ( - s3A3/3) 

x(s)  = sfJ,(s) cos (sz/B).  

741 

and #(s, A) is positive and monotone decreasing to zero as s increases for every 
A in [O, I], while ~ ( s )  is continuous and integrable on (0,co) for z/0 =k f 1. By 
Dirichlet's test for uniform convergence (Apostol 1957), therefore, the integral 
for u converges uniformly with respect to A in [0 ,  I], except when z = 5 0, so that 

for 121 < 6 

-02(z2-02)--6[IzJ +(~2-@)4] - -1  for IzI > 6 
= [ I  

(Watson 1966). The same argument can be applied to p(x, z )  in (28), but either 
approach fails for w(x, z ) .  However, in the space D' of generalized functions on 
the test functions of compact support, we may compute from (1 1) 

lim w = (a2/az2) lim p. 
S-tm 6- m 

Appendix C. Non-diffusive theory 
Neglect of diffusion (9/v = 0)  requires a rescaling to (§ 2) 

d = (hUv/g)+ = I / € ,  

z = .*Id = €X, z = z * p  = €2, 

u* = - u+ UU(Z,X) ,  w* = UW(X,X),  

p* = pop = pw + €-lhpoP(Z, X), 

p* = pst + (pu/d) P(z, 2). 

From ( 5 ) ,  the density is seen to be convected, and from (3) the motion is there- 
fore seen to have a stream function 

$* = - Uz" + Ud$@, 5) 
- 
u = aglaz, w = -a$/az. 

Thus p" = p*($*) ,  which is determined by (I)  and (2) as 

(34) 
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It may be seen from the following three arguments that (34)-( 36) are unlikely 
to admit solutions with €ore-and-aft symmetry. First, E( - X, Z) = U ( X ,  Z )  imdies, 
with the choice $*(x*, 0) = 0,  that $ is even in X and W, odd. Thus V2W and 

(u - 1)  a q a x  + w a q a z  = p-Gu 
are odd, while V2Z andp-lDZ are even. Since p = 1 - s-lh(Z - $) is even. it, follows 
that DU is odd and BW, even. Now, if If l (X,  Z )  be split into its even part pe arid odd 
part Pa, then the even part of (35) and odd part of (36) are 

ap,/az = Vu, ap,/az = V2;lij (37) 

while the odd part of (35) and even part of (36) are 

On transforming back to the original variables, (37) is seen to state that $* 
describes the slow, viscous Stokes flow past the body in homogeneous fluid. By 
contrast, (38) is seen to state that the same $* describes inviscid motion past the 
body in the stratified fluid. 

Secondly, we may inquire whether solutions can exist which, though not 
symmetrical near the body, approach fore-and-aft symmetry in the wakes far 
from the body. It is then plausible (Long 1959; Bretherton 1967) to neglect 
inertia in the far wakes, and the resulting comparison equations corresponding to  
(11)  are (Long 1959; Graebel 1969; Janowitz 1971) readily found from (34) to 
(36) to be 

- 
u = alC.182, w = -@/ax, 

ajqaz = a Z q a x 2 ,  aji/az = -$, (39) 

which cannot have a solution with Ti even in X (Graebel 1969). 
Thirdly, if inertia is not neglected entirely, the Oseen approximation to (34)- 

(36), in which B is replaced by - a/&:, also leads to the same conclusion. Indeed, 
(38) then becomes 

- 
pe -aE/c = g(X),  g’(5) +$ = - (a/€) V2$)  

whence g(Z) = constant because + 0 and V2$ 3 0 as 1x1 --f 00. But that implies 
$ = 0 because (37) implies V4p = 0. Hence, there is no such Oseen wake leaving 
the fluid undisturbed at  infinity. 

Janowitz’ (1971) proposal for an approximate solution of (31) to (33) repre- 
senting steady, two-dimensional flow past a verticad plate is 

- 

= BJm r - V I ( A y )  exp [ - $r4] sin (yr )  dr 
0 

for X > 0, -a < X < co, where 
- 
0 = b/d,  A = (4X)-48, Tj = (4X)-*Z. 

This is a near-similar solution of (39) for Z > 0. Indeed, J,(y) = &y+ O(y3) for 
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24, small 191, and since (J,(y)l < 1 in any case, and 1 + QAr < r4 for A < Q and r 

A-3 y!! - +9A exp ( - ir4) sin (Tr)  dr I- - s: 
dr < A-3?? (I:-’ +Im ) exp ( - &r4) IJ,(Ar) - QArl r  

< CBjow r2 exp ( - gr4) dr + 
A- 

m 

r3 exp ( - 4r4) dr 

= C18 + A-38exp ( - (2A)--2) 

for sufficiently small A, so that 

as A --f 0 in the far upstream ‘wake’. By (39), therefore 

p(., 2 )  = - $(2 .  s) ds f”- - _ -  

which does not exist as it stands, but can be reguIarized to 

with a(r) independent of i j  and such that a(r)dr  exists for any B > 0 and Som 
a(r) - r--I is bounded as r -+ 0. Even then, however, 

+-a as 151 +a, 
because 

m 

Hence [ $3(2,S)dZ 
J - m  

cannot exist, and as with diffusive similarity solutions, the other terms in the 
momentum integrand ( 3  3) decay faster with distance from the body than the 
pressure perturbation. Thus the momentum integral across the upstream wake 
diverges. Moreover, there is no downstream wake to balance the divergence and 
hence a finite drag per unit span of body cannot be expected. 
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